AZtecWave

WDS detection and EDS speed with AZtec accuracy and accessibility

AZtecWave

AZtecWave combines the unique power of WDS to **resolve X-ray peaks** and **quantify minor and trace elements** with the speed and flexibility of EDS. EDS and WDS operation are fully integrated into the AZtec software, guaranteeing maximum accessibility to users with all levels of expertise and Tru-Q[®] processing technology for the most accurate results. When microanalysis is at its most challenging, AZtec Wave provides accurate answers, fast.

Simulated WDS spectrum for visualisation of parameters and manual adjustment

New levels of accuracy and sensitivity

- Enhance clarity of element identification and composition, where element peaks are not clearly resolved in the EDS spectrum
- Detect and measure levels of trace elements down to tens of ppm
- Determine accurate composition of all elements at all concentration levels
- Measure major elements using EDS and heavily overlapped or trace elements by WDS
- Solve characterisation challenges in metallurgy, electronics, mineralogy/geology, ceramics, forensics and nuclear power generation

Quant Re	sults View			Powered by Tru-Q * Edit Columns Copy All					
Element	Signal Type	Line	Apparent Concentration	k Ratio	Wt%	Wt% Sigma	Factory Standard	Crystal	
AI	WDS	Κα	0.01	0.00005	0.0149	0.0094	No	TAP	
Si	WDS	Κα	0.25	0.00251	0.4957	0.0139	No	PET	
Ti	WDS	Κα	0.45	0.00448	0.4214	0.0141	No	PET	
Cr	EDS	K series	21.26	0.21261	18.8430	0.0521	Yes		
Mn	WDS	Κα	0.98	0.00980	0.9974	0.0304	No	LiF	
Fe	EDS	K series	67.96	0.67958	70.0146	0.1148	Yes		
Co	WDS	Κα	0.01	0.00009	0.0095	0.0183	No	LiF	
Ni	EDS	K series	7.81	0.07809	8.7443	0.0611	Yes		
Total					99.5407				

Composition of stainless steel determined by a combination of EDS and WDS

Accessible to all users

- Fully integrated workflows designed to optimise combined EDS and WDS acquisition in the AZtec platform
- New technology uses real-time input from EDS and SEM to optimise WDS set-up guaranteeing excellent results in the shortest collection time for all levels of user expertise
- EDS and SEM inform automatic selection of:
 - Count time
 - Line series and X-ray line
 - Diffracting crystal
 - Background positions
 - EDS acquisition parameters
 - EDS detector position
- Unique 3-way control to optimise beam current, count time and precision before acquisition
- Manual control for experienced users

	Lin			Crystal	Estimated Wt%		Target Wt% Sigma	Peak Time (s)	Background Time (s)	Background Mode	Standardization	
	Auto	•	Κα	ТАР	< 0.2	۰	0.0220			Auto 🖍	MAC 9613 AI2O3 20kV 09/04/2020	•
	Auto				0.65		0.0265			Auto 🖍	MAC 9613 Si 20kV 12/07/2020 20:33	•
	Auto						0.0220			Auto 🌶	MAC 9613 Ti 20kV 12/07/2020 20:37	•)
Mn	Auto						0.0291			Auto 🌶	55 standards block Manganese	•
	Auto	•					0.0220			Auto 🧪	MAC 9613 Co 20kV 17/07/2020 14:13	•

AZtecWave - acquire elements interface for automated set-up of collection parameters

Accurate for all elements

The Wave WDS spectrometer allows AZtecWave to deliver true electron microprobe performance on a SEM

- Optimised for all energies, meaning the optimum X-ray lines are always available for analysis
- All common overlapping element lines separated including transition metal K lines
- Lowest detection limits, in shorter collection times, with lower beam currents

Integrates seamlessly with the AZtecLive EDS software and technology

• Tru-Q technology provides electron microprobe-level quantitative accuracy at EDS count rates up to 400,000cps

AZtecWave Software	
Setup spectrometer	\checkmark
Quantitative analysis	\checkmark
Image registration and navigation	\checkmark
Standardisation	\checkmark
Guided sample exchange and spectrometer shutdown	\checkmark
WDS spectrum simulation	\checkmark
WDS acquisition timeline	\checkmark
EDS informed automatic acquisition set-up	\checkmark
3 way control of beam current/ acquisition time/precision	V
Qualitative spectrum scanning	INCA Wave
WDS X-ray Mapping	INCA Energy+ (optional)

Quantitative Analysis

Dedicated workflow for combined EDS and WDS acquisition and quantitative analysis

- Uses EDS for sample analysis location and to automatically optimise all EDS and WDS collection parameters
- 'Acquisition timeline' estimates WDS acquisition time during acquisition set-up and shows status of the Wave spectrometer during acquisition
- Advanced options include adding additional WDS acquisition or an existing EDS spectrum to an analysis
- Dedicated 'Calculation Composition' step for viewing and checking quantitative results from single or multiple acquisitions
- Synthesised WDS spectra transform EDS spectral data into high resolution, high peak to background space for checking overlaps, and acquisition energy for X-ray lines and backgrounds

O Acquisition Timeline										
///////////////////////////////////////	Si Kα	~		Co Kα	~~	~	Mn Kα	~		
→ PET		PET → LiF								

WDS acquisition timeline

Setup Spectrometer

Step by step workflow to guide you through Wave spectrometer setup and performance check

- Designed for inexperienced users
- Ensures safe operation
- Provides rapid system set-up
- Guarantees optimum performance

Generate performance test report where required (e.g. for accredited facilities)

Standardisation

Guided workflow to ensure system is optimally calibrated using standard materials for accurate composition determination

- Optimised acquisition conditions calculated automatically
- Oxford Instruments 42 and 56 element standard block* composition and map are pre-loaded for easy navigation and speedy set-up
- Association of beam current measurement with EDS count rate for calculation of un-normalised combined EDS-WDS results

* option

Visit nano.oxinst.com/AZtecWave

The materials presented here are summary in nature, subject to change, and intended for general information only. Performances are configuration dependent. Additional details are available. Oxford Instruments NanoAnalysis is certified to ISO9001, ISO14001 and OHSAS 18001. AZtec, Ultim and Tru-Q are Registered Trademarks of Oxford Instruments plc, all other trademarks acknowledged. © Oxford Instruments plc, 2020.

All rights reserved. LITR511915-01

